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Introduction
Today, trends in chemical analysis 
tend more and more towards chemi-
cal structure determination of micro- 
or nano-structured materials using 
various spectroscopic and other imag-
ing techniques [e.g. scanning elec-
tron microscopy-energy dispersive 
X-ray (SEM-EDX), Raman, mass, tera-
hertz (THz), Fourier transform infrared 
(FT-IR), secondary ion mass spec-
trometry (SIMS), inductively coupled 
plasma mass spectrometry (ICP/
MS), inductively coupled plasma opti-
cal emission spectrometry (ICP/OES) 
etc.]. However, an unequivocal deter-
mination of the components of many 
complex environmental, medical or 
industrial samples is barely possible 
by using only a single imaging tech-
nique. Thus the combination data from 
several complementary spectroscopic 
techniques seems to be becoming 
increasingly important, especially as 
spectroscopic imaging technology has 
evolved during recent years, both in 
speed and resolution.

Most software packages bundled 
with the instruments do not allow one 
to combine data from instruments of 
other manufacturers, requiring the 
researcher to write proprietary code for 
the multivariate data (chemometric) 
analysis of multisensor data.

ImageLab,1 a newly developed imag-
ing software, has been designed to 
allow the combined analysis of the 

hyperspectral data obtained from differ-
ent imaging techniques. This multisen-
sor approach supports an image-based 
structure determination using comple-
mentary information to identify individ-
ual constituents of a sample.

Within this ar ticle, we discuss a 
few basic aspects of mult isensor 
hyperspectral imaging, the advantages 
of a descriptor-based processing of the 
data and the capabilities of ImageLab. 
Finally, an example of the analysis of 
a multisensor hyperspectral image of 
a complex environmental sample is 
given.

Fusing multisensor 
images
While multisensor imaging is well-
known and has been performed for 
more than a decade in medical appli-
cations,2 there is still a lack of general 
purpose software allowing one to 
compile multisensor images into a 
single dataset and supporting the joint 
analysis of the various sensor input 
signals. Various approaches of (semi-)
automated fusion algorithms have been 
developed and tested in recent years. 
Most of these approaches try to auto-
matically align images from different 
sensors (e.g. radar and visible light) 
assuming that part of the information 
is visible in both spectral domains. 
While this is true for many surveillance 
images, this is not necessarily true for 
images obtained from spectroscopic 

techniques delivering mutually exclu-
sive information. In such cases auto-
mated image fusion is quite demanding 
and prone to errors. We have therefore 
developed a scheme based on a refer-
ence photo which is common to all the 
spectral images to be fused.

In general, fusing multisensor images 
is subject to the following main prob-
lems: (1) data formats of various 
spectroscopic devices are different, 
(2) the instruments used to obtain the 
images normally have different spatial 
resolutions, (3) the images exhibit 
different orientations of a sample and 
(4) the spectral domains may show 
little information in common. While 
the first problem is mainly a practical 
problem (which can be quite annoying 
given that some manufacturers of imag-
ing instruments do not fully support the 
export of the image data in an easily 
readable format), problems (2) to (4) 
are much more demanding.

Assuming that the images exhibit 
a linear spatial relationship to each 
other (i.e. there is no non-linear distor-
tion, which is true for most practical 
purposes) we simply have to find the 
transformation matrices which project 
all images to be combined onto a 
common reference grid. One possible 
way to achieve this is to create cali-
brated images which are referenced to 
a photo (or a map or some other kind 
of reference grid) which is common to 
all spectral domains. When dealing with 
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microscopic hyperspectral images, this 
can be easily achieved by taking a photo 
in the visual range of light. Each of the 
hyperspectral images can then be cali-
brated by specifying several reference 
points, both in the hyperspectral image 
and the photo. Each of the transforma-
tion matrices is then calculated by multi-
linear regression.

After having established the calibra-
tion equations the final step of fusing 
is achieved by projecting the individual 
hyperspectral images into a common 
space, resulting in a hypercube where 
the pixels of the various spectral compo-
nents are aligned on top of each other 
(Figure 1).

At this point we have to deal with 
those parts of the combined image 
which lack data in some spectral 

domains due to partial overlap of the 
original images. It is particularly impor-
tant to mark these partial regions in 
order to be able to exclude the corre-
sponding pixels from statistical process-
ing which may require valid inputs from 
all spectral regions.

Raw data or spectral 
descriptors?
Another important aspect of multisen-
sor imaging is the statistical interpretation 
of the data. Although most researchers 
tend to use the available raw data for 
the development of multivariate models 
in order to interpret the data, we recom-
mend not to use the raw data itself but 
instead to introduce spectral descriptors 
which specify and extract particular infor-
mation from the data. The definition and 

usage of spectral descriptors is a simple 
and efficient way: (1) to cope with the 
curse of dimensionality in multivariate 
data analysis, and (2) to improve the 
information structure in the data space. 
Both the reduction of the dimensional-
ity of the independent variable space and 
the improved data structure contribute to 
better multivariate data models and faster 
calculations.

In order to explain the motivation 
behind the preference of using spectral 
descriptors instead of raw data let us 
discuss a few aspects of this approach 
in more detail. First, the well-known 
curse of dimensionality3 automatically 
results in an almost empty feature 
space which may reduce the effec-
tiveness of multivariate data models 
considerably. Despite the fact that in 
imaging the number of “samples” (i.e. 
the number of pixels of an image) is 
significantly higher than in classical (i.e. 
chemical) analysis, the feature space 
is still almost empty. For example, if 
you acquire spectra with 300 intensi-
ties measured along the wavelength 
axis, the feature space contains about 
10600 cells (assuming that the inten-
sity is measured with a resolution of 
1%). Assuming further that the image 
consists of 200 × 200 pixels, we have 
40,000 samples—which is almost noth-
ing compared to the huge size of the 
feature space.

This empty space may (and most 
probably will) result in poor quality 
of multivariate classifiers. And even 
further, it is hard to test the quality of 
this classifier, as it is impossible to fill 
this space with a reasonable number 
of evenly distributed samples. Thus it 
is a good idea to reduce the size of the 
feature space by focusing on variables 
which contain information relevant to 
the investigated problem. At this point 
variable selection methods may help, 
but will not entirely resolve the prob-
lems.

The second aspect which must not 
be overlooked is the chemical knowl-
edge which is contained within the 
data, but which is blurred over the huge 
feature space. This knowledge can be 
“concentrated” in the feature space by 
both reducing the size of the space and 
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Figure 1. The fusion of hyperspectral images has to cope with two problems: different spatial 
resolutions of the instruments and the rotation and shift of the sample which occur when moving 
the sample from one instrument to the other. The merged image thus exhibits only a reduced 
area where data of both spectroscopic devices are available. Regions having only partial or no 
data at all have to be masked (dark grey area).
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by transforming the space in a way so 
that chemical knowledge is encoded 
by derived variables (“spectral descrip-
tors”).

A small practical example should 
clarify the situation: Figure 2 shows 
the images obtained from an environ-
mental sample analysed by a Raman 
spectroscopy microscope. At the left 
the image resulting from raw intensities 
at 2917 cm–1 is displayed, the centre 
image shows the results from integra-
tion over the peak around 2917 cm–1, 
while the right picture shows the image 
obtained by calculating the correlation 
to a template peak. This template peak 

is an idealised spectral peak, represent-
ing a certain class of substances (i.e. 
the band caused by stretching modes 
of CH-containing compounds).

In the first and the second cases one 
easily recognises several more or less 
blurred spots in the images. Looking at 
the spectra of two of these spots, we 
can see the difference between these 
two spectra. At location L1 there is a 
clear peak around 2917 cm–1, while at 
spot L2 there are fluctuations originat-
ing from a broad underlying peak and/
or excessive noise.

The idea behind spectral descriptors 
can now be used to encode the 

knowledge that a peak occurring at 
2917 cm–1 with a certain width may 
(and certainly will) have a special 
meaning related to the class of 
substances (i.e., in this case, aliphatic 
compounds) .  So i f we calculate 
the correlation of all spectra with a 
template spectrum containing only this 
single idealised peak, we end up with 
an image which shows only a single 
large spot around L1. And indeed, 
further analysis shows that this very 
spot is dif ferent from all the other 
spots, containing organic substances, 
while the rest of the particles consist 
mostly of inorganic substances.

Figure 2. The three images result from three methods used to plot the information contained in the Raman spectrum around 2900 cm–1. Left: 
Image obtained from a single wavenumber (2917 cm–1); centre: image obtained by integrating the intensities between 2840 cm–1 and 3033 cm–1; 
right: image obtained by correlating a triangle template peak with the spectrum. It can be clearly seen that the correlation descriptor is much more 
selective than the other two approaches.
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ImageLab—A general 
software solution for 
multisensor imaging
ImageLab is  an MS Windows™-
based multisensor imaging system for 
processing and analysing hyperspectral 
images.1 It has been designed to cope 
with the above mentioned problems 
of multisensor imaging. The principal 
idea behind ImageLab is to support 
as many di f ferent spec t roscopic 
techniques as possible. In order to 
achieve this ImageLab implements 
the concept of (user- defined) import 
filters which are specifically designed 
to import the measured data from vari-
ous imaging devices. The only restric-
tion for the import filters is based on 
the necessity of being able to access 
the data generated by the device. In 
many cases this data access can be 
performed via text formats resulting in 
simple and easy to implement import 
filters.

ImageLab is a modular system 
consisting of a base engine, a graphi-
cal user interface, a chemometrics 
toolbox and optional user-supplied 
modules. It supports the most impor-
tant spectroscopic imaging techniques, 
such as ultraviolet-visible, infrared, 
Raman, terahertz, optical emission/
absorption, energy dispersive X-ray 
and mass spec trometr y.  Fur ther, 
ImageLab allows one to combine 
hyperspectral images with maps of 
physical properties and conventional 
high-resolution colour photos (see 
Figure 3).

A wealth of built- in multivariate 
statistical methods provides the capa-
bility to analyse and classify acquired 
hyperspectral images. Among these 
are: MLR (multiple linear regression), 
PCA (principal component analysis), 
HCA (hierarchical cluster analysis) , 
similarity maps and PLS/DA (partial 
least squares discriminant analysis).

All images—either images of raw 
data or images resulting from statis-
tical analyses—can be combined with 
conventional photos by utilising an 
image stack. The image stack can be 
used to blend up to eight layers into 
a single image using different algo-
rithms and levels of transparency. 

Thus analytical information can be 
highlighted directly in the correspond-
ing photo, making it much easier to 
recognise areas of interest.

In addit ion, ImageLab provides 
several  tools to pre -process and 
improve raw image data. Images 
may be cut ,  resampled, mirrored 
and masked. A bad pixel detector 
helps to identif y pixels which are 
inval id due to problems with, for 
example, the detector. On the spec-
tral data processing side, the most 
impor tant tools, such as baseline 
subtraction, smoothing, the calcu-
la t ion of der ivat ive spec tra ,  and 
many more are included. Fur ther, 
ImageLab provides a versatile and 
open programming interface allow-
ing researchers to hook up their 
own data processing modules (writ-
ten in any language which al lows 
access to the local disk and to create 
executables) . This concept of user-
defined modules can also be used 

to develop data impor t modules 
fo r  a ny  s pe c t ro s cop i c de v i c e . 

Application example
In order to demonstrate the benefits 
of multisensor imaging for analytical 
purposes, an example of its applica-
tion to complex environmental samples 
is given. Western Australian salt lakes 
exhibit formation of ultra-fine parti-
cles, which are supposed to precipitate 
rain. To study the diversity of organic 
and inorganic particles at these salt 
lakes, the German Research founda-
tion has funded three measurement 
campaigns in the so-called Wheat 
Belt. Particles from 250 nm to several 
microns have been collected by impac-
tion. Subsequently, images have been 
acquired using high-resolution electron-
microscopy, energy dispersive X-ray 
(SEM-EDX) and Raman spectroscopy to 
unravel the complex composition of the 
samples.4

Figure 3. General processing queue within ImageLab: the acquired multisensor data are 
subject to a feature extraction generating a set of spectral descriptors which form the basis 
of chemometric algorithms applied to the data. The resulting “virtual images” are finally 
combined into one or several “real” images which may be blended with photos to improve the 
interpretability of the data.
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The information obtained from 
these imaging techniques is comple-
mentar y.  SEM prov ides a  h igh-
resolution image for studies of the 
morphology, EDX delivers the elemen-
tal composition and finally the Raman 
spectroscopic imaging provides vibra-
tional information of organic and inor-
ganic species. While, for example, 
NaCl is only visible in the EDX image, 
volatile organics on the other hand are 
only visible in the Raman image. Other 
species, e.g. CaSO4 or silicates, can 
only be verified unquestionably using 
both techniques, where the elemental 
composition supports the assignment 
of vibrational bands. We constructed 
several classifiers with different selec-
tivities, e.g. being selective for sodium 
chloride, calcium sulfate, sil icates, 
soot and organic substances exhibit-
ing CH bonds. The complex mixture 
of the precipitated aerosol could be 
unravelled by analysing the combined 
hyperspec t ra l  da tasets ,  us ing a 
descriptor-based approach (see Figure 
4). In addition to the commonly used 
bulk analysis with mass closure calcu-

lations, multisensor hyperspectral 
imaging provides a more detailed 
understanding of mixing and interlink-
ing of different aerosol constituents. 
For this example, the coating of inor-
ganic particles such as NaCl, CaSO4 
and silicates by semi-volatile organic 
species could be ascertained.

Conclusion
Multisensor hyperspectral imaging 
proves to be a versatile tool for the 
spatially resolved chemical analysis of 
complex samples. As demonstrated 
above, the combination of multiple 
imaging techniques provides access to 
a deeper understanding of the chemi-
cal nature of complex environmental 
samples such as aerosols. Compared to 
established methods of aerosol analy-
sis, additional morphological and chem-
ical information can be acquired. Thus, 
multisensor imaging, using Raman 
spectroscopy and SEM/EDX in our case, 
significantly assisted the interpretation 
of the samples. ImageLab proved to be 
a valuable tool for the analysis of multi-
sensor hyperspectral data and opened 

the door to a fast and efficient analysis 
of such data.
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